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Abstract-The present paper considers the steady, two-dimensiol~ai How of a vertically stratified viscous 
fluid in the annuius between two concentric horizontal cylinders in a uniform gravity field. The outer 
cylinder is assumed to be maintained at a variable temperature such that conditions for vertical 
stratificatiol~ are satisfied. Theoretical solutions are obtained in a power series of (modified) C;rashof 
number G up to G-‘. Two cases are considered: when the inner cylinder is either thermally insulated or 
when ifs surface temperature is kept constant. Results are presented mostly in the form of graphs of the 
streamlines and isotherms. A dim~llsionless stratificatioli parameter .S governs the ilow. For S equal to 
zero, the solutions tend to the ~llstrati~ed case. When S approaches infinity. the Ilow has both vertical 
and horizontal symmetry. Whell the inner cylinder is thermally insulated. the streamline pattern is almost 

the same as in the isothermal case (S = zc 1. but the directions of the Jlow are reversed. 

NOMENCLATURE 

Al1 primed quantities are dimensional; all un- 

primed quantities are dimensionless. Subscripted 
terms with m denote their corresponding values at 
the diametral plane-(J’ = 0). 

(I’, A’, radii of the inner and the outer cylinders; 

5X*? acceleration of gravity; 

G, square root of modified Grashof number. 
IIs’Bci”(dr~_,idr’,] 1 2j~‘; 

I<‘, thermal conductivity; 
r’,l., radial coordinate r = r’ia’; 

P. Prandtl number I*‘;&‘; 
R, ratio of the outer to the inner radii of the 

cylinders; 

& steepness parameter defined as 
[W(dT&/d$)] divided by the temperature 
difference between inner cylinder and the 
fluid occupying the diametral plane; 

T’, T, temperature T’ = TLC cr’(dTk/dy’)] T: 
dT,/d_r, constant temperature gradient 

describing the constant stratification; 
0:. t:. v-component of velocity, U, = t:)z’/v’G; 
t&t+, If-component of veiocity, t10 = &i/v’G’; 
Y’, 4’3 y’ = 8 cos 0, I’ = j+;rr = r’ cos Olcr’. 

Greek symbols 

thermal diffusivity; 
volumetric coefficient of thermal 
expansion ; 
cylindrical polar angle measured from the 
upward vertical 0 = 0; 
density; 
kinematic viscosity; 
stream function $J = +‘/Gv’. 
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NAXJKAL convection heat transfer lecithin enclosed 
spaces is becoming increasingly important because of 
its various applications in nuclear reactor design, 
cooling of electronic equipment, aircraft cabin in- 
sulation, pressurized-gas, uI~dergroulld electric trans- 
mission cables and thermal storage systems. Exper- 
imental, analytical and numerica studies of free 
convection problems in the annulus between hori- 
zontal concentric cylinders have been presented by 
several authors for small and large Grashof numbers 
[I-I I].* TllermocoIlvective motion of low Prandtl 
number ffuids within a horizontal cylindric~~i annu~us 
has been investigated by Custer and Shaughnessy 
[I71 using a double perturbation expansion in 
powers of the Grashof and Prandtl numbers. 
Eichhorn, Lienhard and Chen [I?] gave experimen- 
tal heat transfer results for isotherm~ll spheres and 
horizontal cylinders immersed in a thermai~y strati- 
fied fluid. They also presented visual observations 
of the flow field for the sphere for various values of 
the steepness parameter S. Observations on con- 
vective transport and plume shedding induced by a 
heated horizontat cylinder submerged in quiescent 
salt-strati~ed water have been made by Hubbell and 
Gebhart [13]. Chen 17141 in his thesis studied the free 
convection from a horizontal cylinder in stratified 
fluid both analytically and experimentally (see also 
Chen and Eichhorn [IS]). 

In this paper, the free convection problem between 
two concentric horizontal cylinders is presented 
when the (modi~ed) Grashof number G is small. The 

*An extensive literature survey has been given by Kuehn 
and C;oldstein [I I]. 
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tluid inside the annulus is considered thermally throughout. By similar arguments TI, r3, Ti.. and 
stratified. It is obtained by imposing a vertical I//~, lbl.. etc. are zero. Equation (2) gives for TO 
temperature gradient on the walls of the outer 
cylinder. The inner cylinder is either maintained at a 

V’T, = 0. (9) 

constant temperature or is thermally insulated. Solutions of (0) satisfying (5) and (6) are 
Perturbation solutions in powers of G are obtained 
up to G”. Streamlines and isotherms are plotted for 
various values of S for a radius ratio R = 2, I’ = (1.7 

TO+ -~)+&(Cos())Jr-~fj (IO) 

and G = 1. The velocity components and the Nusselt or 
numbers are also shown graphically for the above 
mentioned values of the parameters. 

To = &(cosO) r+; 
i ‘) (II) 
i I 

2. FOKMUI.ATION AVD SERIES SOI.UTION 

Consider two infinite concentric circular cylinders 
whose common axis is horizontal. The region inside 
the annulus contains a viscous incompressible lluid 
and a uniform gravity field acts vertically downward. 
Cylindrical coordinates are used, the angular coor- 

dinate being measured clockwise from the upward 
vertical 0 = 0. The Navier-Stokes equations for 
steady, two-dimensional motion are (see Mack and 

Bishop [5] ): 

G (:(I/$, V2$) 
V’l// = - - 

r i(r. 01 

Equations (IO) and (I I ) represent the solution for 
the isothermal and thermally-insulated inner cylinder 
cases respectively. Substitution of (IO) and (I I ) into 

(I ) gives 

sin 0 
V4$, =_‘-_ R2(sin 20) 

SInR r (R2 - I )r* 
(12) 

and 

R2 sin 20 
v’l/J, = __ __ 

R2+I r2 
(13) 

whose solutions, satisfying the conditions 11/r = 
a$Jc’r = 0 both at r = 1 and r = R are 

-G 

sin 0 
11/l = 

S(lhInR) 
B,r”+r”Inr+B,r 

where 

V2T = c SU-, $1 ___ 
r ?(r, 0) ’ 

+B,rlnr+~ 1 r 

iiR2(sin10) c r,+C r2 

+ Ih(R*+ci) \ ’ i 2 

-r’Inr+C,fZi 
r2 1 

(14) 

The above equations make use of the Boussinesq and 
approximation (see Spiegal and Veronis [ 161). 

P’-P’ d = -P’(T’-T;), 
I):, 

T’ = T; + Ll’(dT;,jdy)T. 

The non-dimensional velocity components are re- 

lated to II, by where 

1 (7$ pti B, = -4(R2-I)[(R2- I)-(R2+ l)lnR], 
r,=-----, 

r 3) 
o,, = - -. 

r?r 
(4) B, = [(R2- l)2+2(R2- l)21nR-4RJln2R]/E,, 

The boundary conditions are 
B, = [(R2- I)(1 -R’)-3(R2-l)21nR 

r’$ 
+!I=~=(), 7.‘; or !$=(I at r= I, 

+ XR’ In2 R],‘B,, 

(5) B, = 2(R2 - I)(R’- I -4R’InR)/B,, 

B1 = R2[(R2 - I)’ -4R2 In2 RI/B, 

$=g=O, T=rcosO at r=R. (6) and 

Three parameters G, P and S govern the flow. We 
attempt to solve (I) and (2) subject to conditions (5) 

c = -(R2+l) 7R21nK -___ 
’ 2(R2 - I )2 (R2 - I )’ ’ 

and (6) by an expansion in powers of G (P and S 
fixed). For the solution, we assume the form, 

C 
2 

= -(R’+4R2+I)+R2(R’+R2+4)lnR, 
_7(R2 - I )2 (R*- I)” ’ 

ti =~,(r,8)+G~,(~,O)+G~~~(r,e)+..., (7) C, = _(3C,+3C2-t~2), 

T=To(r,~)+GTl(r,0)+G2T2(r,0)+... (8) C,=2C,+C,-l/Z 

and substitute into equations (I) and (2). Since t/j and ci is equal to -I in (14) and +I in (IS) 

and d$/c% vanish both at r = I and r = R, t/j,, is zero respectively. 
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Simifar expressions for T2 and J/s can be ob- 

tained using (I), (Z), (IO), (I I), (14) and f IS) as given 
by the following: 

T2(r, 0) = $ fi(r)(cos no), 
“=I 

Y,(r, @) = i F,(r)(sin mO). 
m=1 

The co&icients _/i and F,,, are functions of r, R, P and 
S. These expressions are long and are omitted to 

conserve space; readers interested in them are 
invited to write to the authors. 

by the dominant term $,, and the radial velocity 

component u,(6 = - I) given by the following: 

6R2 sin 20 
+I = jq$qj 

x C,r4+C2r2-rZInr+C3 +$+ 
i I (16) 

and 

,, = f. ~2.~ = !R’ cos 20 
t r 2% 8(R2i-6) 

x 
i 

C,ri+Czr2-Izinr+C,+~~ . (17) 
~ 

0 

FIG. I. Streamlines and isotherms for S = CD, G = 1, P = 0.7, R = 2. Radial velocity changes sign at 
0 = 45 and 135’. 

In the preceding section, the two-term expansions 
for T and JJ have been obtained in powers of G, with 

S, P and R fixed. According to the criterion discussed 
by Mack and Bishop [S] and Hodnett [IX], we find 
that the series solution converges for G < 10 when R 
= 2 and P and S = 0( I ). When R = 5, the solution is 
valid for G < 2, P and S being of order unity. 

Behavior of the streamlines and isotherms is 

presented in detail for fixed values of R( = 2), G( = 1) 
and P( =0.7) for various values of S ranging from 

zero to infinity. For the steepness parameter S 
tending to zero, the limit of the solution obtained in 
this paper approaches the unstratified case of Mack 
and Bishop [S]. Streamlines for this case when the 
inner cylinder is maintained at a higher temperature 
than that of the outer cylinder have been shown 
graphically by several authors [2, 5, I I], it is found 
that the flow is symmetrical with respect to the 
vertical plane (8 = 0 and x) through the axis of the 
cylinders. The Row is upward along the inner 

cylinder and downward along the outer cylinder. 
The motion in the right half annulus is clockwise 
near the outer cylinder and counter-clockwise at the 
inner. But when S tends to infinity, the flow becomes 
symmetrical with respect to both the verticai and 
horizontal planes (0 = ql.2 and 3n/2) passing 
through the axis of the cylinders. This can be shown 

t’, is negative at 0 = 0, vanishes at 0 = r/4 and 
becomes positive at B = 7~9, near the inner cylinder. 

An inRow at 0 = 0 from the outer cylinder to the 

inner cylinder changes into an outflow at 0 = n/2, 
transition taking place at B = x/4. Near the outer 
cylinder an exactly reverse flow takes place. A similar 
streamline picture was observed by Eichhorn et al. 

[12] in their flow visualization for a sphere in a 
stratified ‘medium. The streamlines for this stratified 
case are shown in Fig, I. 

When the streamlines are sketched for various 
finite values of S greater than zero, the interaction of 
the two free convection Hows (S = 0 and S = ~j) is 
described as follows. For smaller values of S, a single 
cell of the crescent-eddy type of flow (unstratified 
case) exists in the two halves of the annulus. But as S 
is increased (perhaps to a value of 0.8), the single ceil 
flow changes into a double ceil flow, and a region of 
reversed flow exists near 8 = 0. A further increase in 
the value of S moves the angle of separation of one 
cell from the other toward 0 = n/2. 

Streamlines for fixed values of G = 1.0, P = 0.7 
and S = I, 3.33 and JO are shown graphically in Figs. 
2(a), (b) and (c) respectively. These flow lines depict 
the motion discussed above. The velocity com- 
ponents v, and v, are plotted vs radial position for 
various values of B in Figs. 3 and 4. v, vanishes and 
changes sign at f? = 20 and 120 for S = 1, at B = 40 
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PIG. 2(a). Streamlines and isotherms for S := I, G = I. P = 0.7, R = 2. Radial velocity changes sign al 
0 = ‘Oaod 120 
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FIG. 2(c). Streamlines and isotherms for S = IO, G = 1, P = 0.7, R = 2. Radial velocity changes 
II=45and 135. 
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FIG. 3(a) Radial component of velocity vs radial position FIG. 3(b) Radial componcrlt of velocity c’s radial position 

for S = I. G = I. P = 0.7. R = 2. C, vanishes and changes Ibr S = J.33. I; = I. P = 0.7. R = 2. I’, vanishes and 

sign at 0 = 20 and 120”. changes sign at B = 40 and 130”. 

sign at 



644 S.N.Sruc;H and _I. M. ELLIOIT 

2 

I 

s 
x 

i 0 

-I 

-2 

-3 

t 

-6 1 I I 

02 04 0.6 0.8 1.0 

FIG. 3(c). Radial component of velocity vs radial position FIG. 4(b). Theta component of velocity vs radial position 

for S = 10, G = I. P = 0.7, R = 2. 11, vanishes and changes for S = 3.33. G = I. P = 0.7. R = 2. L‘ vanishes and 

sign at H = 45 and 135”. changes sign at 0 = 75’. 
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FIG. d(a). Theta component of velocity vs radial position 
for S = I. G = I. P = 0.7, R = 2. I)~ vanishes and changes 

sign at H = 350 
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FIG. -UC). Theta component of velocity vs radial position 
for S = 10. G = I. P = 0.7, R = 2. co vanishes aud changes 

sign at H = 135’. 

and 130 for S = 3.33 and .Q = 45 and 135 for S = IO. 
t’H vanishes and changes sign at 0 = 35 for S = 1.0, at 
@ = 75 for S = 3.33 and at 0 = 85 for S = IO. 

When the inner cylinder is thermally insulated one 
finds from the dominant terms li/, (I@, L’,( 17) and zi 
= + I, that all the qualitative features of the tlow 
will be the same as for S = co, but with the Row 
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FIG. 5. Streamlines and isotherms for the case with the inner cylinder thermally insulated 
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FIG. 6. Ratio of local Nusselt number for the inner cylinder 
to the Nusselt number for S = 0 vs angular position. 

directions reversed. Figure 5 shows the plot of 
streamIines for this case. 

Isotherms for various cases discussed above are 
also shown in Figs. I, Z and 5. The local Nusselt 
number for the inner cylinder is defined as Nu, = 
-[r(dT/dr)],=,,,. For S = 0, local Nusselt number 
for the inner cylinder NuSSo can be obtained from 
the calculations of Mack and Bishop [S]. We find 
that for G = I, Nu,=, depends only on the first term 
of the expansion, considering up to the second 
decimal place. 

NM,=,, = l/In R. (18) 

Figure 6 shows the plot of ~NM~~~#~=~~ vs tI for 
various values of S. It is found that the local Nusselt 
number for the inner cylinder decreases with f. 
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CONVECTION KATURELLE ENTRE DES CYLINDRES 
COWENT‘RIQUES ET HOKIZONTAUX DANS U\1 FLUlDE 

LLGEREMEN-I’ Sl-RATIb.IE THERMIQUE\JENT 

Rbumb-On considtre I'icoulement permanent, bidimensionnel d’un fluide visqueux stratil? verticale- 
ment dans un espnce annulaire entre deux cylindres concentriques et horizontaux, dans un champ 
tmiforme de pesanteur. Le cylindre extt?rieur est suppo& maintenu & une temptrature variable de telle 
sorte que soient satisfaites les conditions de stratification verticale. On obtient des solutions thtoriques en 

strie de puissances du nombrc de Grashof (modifit) G jusqu’a G3. Deux cas sont consid&&: le cylindre 
lntt-ricur est isoIL; thermiquemcnt. ou sa tempirature de surface est constante. Des rtsultats sont prisentts 
sous formc de graphes d’isothermes et de lignes de courant. IJn paramttre adimensionnel de stratification 
S’ gouverne I’~coulement. Pour S igal S r&o, les solutions tendent vel-s le cas non-stratifiC. Quand S tend 
vers I’inlini, I’icuulement a. ri la his, une symktrie verticale et une horizontale. Quand le cylindre interne 
est thermiquement is&. la configuration des lignes de courant est B peu pr& la msme que dans le cas 

isotherme i.S = 'y-1, mais les directions de l’&oulement sont inverskes. 

FREIE KONVEKTION ZWISCHEN HORlZONTALEN KONZENTRISCHEN 
ZYLINDERN IN FINEM SCHIWACH THERMISCH GESCHICHTETEN MEDIUM 

Zusammenf;lssung -In der vorliegenden Arbeit wird die stationtire zaeidimensionale Striimung emer 
vertikal geschichteten viskosen Fltissigkeit im Ringraum zhischen zwei konzentrischen horizontalen 

Zylindern unter der Annahme eines gleichfiirmigen Gravitationsfeldes betrachtet. Dabei wird 
angenommen. da8 der hul3ere Zylinder auf einer variablen Temperatur gehalten wird, so daR die 
Bedingungen fur vertikale Schlchtung erfiillt smd. l‘heoretische Losungen werden m b’orm emer 
PotenTreihe 3. Grades der (modifi7ierten) Grashof-Zahl erhalten. Dabei werden rwei F&Ile untersucbt: 
Del- innere Zylinder wird entweder thermisch isoliert oder mit konsranter Oberfl~chentemperatur 
angenommen. Die Ergebnisse werden hauptsachlich durch grafische Darstellung der Stromlinien und 
Isothermen ange!eben. Ein dimensionsloser Schichtungsparameter S bestimmt die Xtrijmung. Fiir S 
pleich null geht die Liisunp in den nichtgeschichteten Fall iiber. Geht S gegen unendlich, so ist der FluB 
sowohl vertikal als such horizontal symmetrisch. Ist der innere Zylinder thermisch isoliert, so haben die 
Stromlinien fast den gleichen Verlauf wie im isothermen Fail (S = z). aber die Striimungsrichtung ist 

umgekehrt. 

CBOEtOflH.457 KOHBEKLJWI MEKAY TOPM30HTAJIbHbIMM KOHLJEHTPAYECKAMM 
~WJlWHjJPAMM B CJlA60 TEPMINECKM CTPATM@k¶~MPOEiAHHO~ 3KMAKOCTl-i 

AIIHOT~UII~-I~CC~~~~~TCI~ CTaUHOHapHOe nByMepH0e TeYeHWe BepTHKanbHO CTpaTH$SiUHpOBaHHOii 

BR3KO# XGUtKOCTI( B KOnbUeBOM 3a3Ope Memy RByMR KOHUeHTpHYeCKHMH ~Opu30HTanbHbIMH UHJIHH- 

npaMH B onHopoaHoM rpaBH-rauWonHoh4 none. npennonarae-rcr, YTO TehtnepaTypa meuniero uwtm+npa 

W3MeHReTCR. TaK IT0 ynOBneTBOpRKITCfl yCnOBH5l DJR CT~THI$HKaUHH XHLIKOCTH B BepTEiKanbHOM 

Hanpaenemiw. LIonyYetibr TeopeTHYecKHe pemewn a sHne cTeneHHor0 prna (Monu~~~poeawtoro) 

qmzna rpacrda G no warem% G3. Mccnenymmx cnyyaa, Korea BH~T~~HHH# uww~np u.rm TepMH- 
qecKH a30nbfpoeaH, ~~JIH -ieMneparypa ero noeepxHocTH noarrepausae+cn U~CT~S~HHO~~. PexynbTam 
q3e~c.c-raeneabr B OCHOBHOM B Bme nearpaMM nmwii ToKa ti m0TepM. 6espa3MepHbrB napaueTp 

CTpaTH@lKaUHH S IlBnReTCIl 0npenenrmU.t~ &ml IIOTOKP. l-Ipti S=O jw.reUwR CTpeMRTCR K cnyram 

OTCyTCTBHR CTpaTH@HKaUHH. flpH s= CC UOTOK XapaKTepH3yeTCff KaK BepTHKanbHOfi, TaK H rOpH- 

3OHTanbHOii CuMMeTpHeti. B CJQ’Yae, KOrna BHyTpeHHHti l@i~IHHnp RBnlleTCR TepMHYeCKti U3OnUpo- 

sa~~br~.~ap~a~a nae~ii TOKa n0YTaconnanaeT c K30Teph4HYecKxM cnyraeM(S= x&Hoc O~~Z~THIAM 

HanpasnenHeM norora. 


